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Abstract

Bats are natural reservoirs for a wide range of RNA viruses. Members of the genus
Betacoronavirus, including Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) and
Middle East Respiratory Syndrome virus (MERS-CoV), have attracted particular attention due
to their recent zoonotic emergence. However, much of the known diversity of
betacoronaviruses is based on data from Asia, Africa, and the Middle East, with limited
genomic information available from the Americas. Herein, we report the complete genome of
a novel bat betacoronavirus identified from a Pteronotus parnellii bat sampled in Brazil.
Phylogenetic analysis revealed that this virus is sufficiently distinct from the five recognized
Betacoronavirus subgenera to represent a new subgenus. Of note, the spike protein of this novel
bat coronavirus possesses a functional furin cleavage site at the S1/S2 junction with a unique
amino acid sequence motif (RDAR) that differs from that found in SARS-CoV-2 (RRAR) by
only one amino acid. Comparative structural analysis identified other betacoronaviruses in bats
with furin cleavage sites at the S1/S2 junction, suggesting that this region is a structurally
permissive "hotspot" for cleavage site incorporation. Our study provides a broader
understanding of the phylogenetic and functional diversity of bat coronaviruses as well as their

zoonotic potential.
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Introduction
Bats (order Chiroptera) are among the most diverse groups of mammals!-? and similarly harbor
a diverse array of RNA viruses, including coronaviruses and paramyxoviruses with zoonotic
potential®->. Various members of the genera Alphacoronavirus and Betacoronavirus have been
identified in bats, which are considered important natural hosts for these viruses*>¢, and the
betacoronaviruses SARS-CoV, SARS-CoV-2, and MERS-CoV recently emerging in humans’*.
The high diversity of viruses in bats therefore positions them as a key taxonomic group for
zoonotic disease surveillance’. Although metagenomic-based surveys have identified many
bat-associated viruses, the viral sequences obtained often only comprised the RNA-dependent
RNA polymerase (RdRp) used in RNA replication, with limited coverage of other viral proteins
(e.g., surface proteins) that typically determine host range, tissue tropism, and pathogenicity.
Although novel RNA viruses continue to be identified in bats, especially in China and
South-East Asia>®, our understanding of the phylogenetic diversity of bat-associated RNA
viruses is also limited a bias in sampling toward particular geographic localities. For example,
our current knowledge of the diversity of betacoronaviruses is largely based on sampling from
Asia, Africa, and the Middle East!®!". In marked contrast, although South America is classified

as a global biodiversity hotspot!?

, relatively little is known about the RNA viruses that circulate
in bats in this large geographic region.

Coronaviruses (CoVs) are characterized by the presence of a spike (S) surface
glycoprotein that binds to receptors on the cell surface to initiate infection. Some CoV S
proteins are also characterized by the presence of a furin cleavage site (FCS) at the S1/S2
junction, in which the S1 subunit is responsible for receptor binding and the S2 subunit
mediates membrane fusion'3. The FCS facilitates protease cleavage within the host cell,
contributing to enhanced infectivity and/or pathogenicity!4!”. SARS-CoV-2 has an FCS at the

S1/S2  junction. While this feature is not found in closely related bat-associated

4
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87  sarbecoviruses!'®, a recent study identified a furin-like cleavage site in bat betacoronaviruses
88  basal to the sarbecovirus lineage!®, indicating that similar motifs can arise naturally in bats.
89  However, the diversity, evolution, and functional significance of the FCS in bat
90  betacoronaviruses has yet to be systematically investigated. Here, we describe a novel
91  betacoronavirus with a functional FCS that was found in Brazil, a region where surveillance
92  has been limited.

93

94  Results

95  Bat sampling in Brazil and sequencing

96  We captured diverse bat species from three locations in Brazil (Riachdo [Maranhdo state],
97  Botucatu [Sao Paulo], and Arari [Maranhao]) (Fig. 1A and Supplementary Table S1), from
98  which we sampled intestinal tissues. Samples were obtained from multiple species of microbats
99  (members of the families Phyllostomidae and Mormoopidae), including Anoura caudifer,
100  Anoura geoffroyi, Carollia perspicillata, Desmodus rotundus, Glossophaga soricina,
101 Pteronotus parnellii, and Rhinophylla alethina, which were identified based on morphological
102 characteristics (Fig. 1A and Supplementary Table S1).
103 We generated 16 metatranscriptomic libraries from pooled intestinal RNA of bats
104  representing different species and collection regions. Each library yielded approximately 40
105  million paired-end reads on the Illumina NovaSeq 6000 platform. We assembled the quality-
106  filtered reads into contigs and screened them against the GenomeSync database

107 (http://genomesync.org). Contigs with top hits to viral genomes were considered virus-like and

108  manually curated, focusing on identifying CoV-like sequences.
109
110  Genomic features and evolutionary relationships of the novel betacoronavirus

111 Through metagenomic sequencing we identified a partial CoV-like genome from a library of
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112 Parnell's mustached bat (Pteronotus parnellii) collected at Place Riachdo, Maranhao state,
113 Brazil. Because the whole genome may not have been identified due to the mixing of multiple
114  samples, we individually sequenced the samples in the library in which CoV-like sequences
115  were found. This led to the identification of a 30,386-nucleotide CoV genome, tentatively
116 named BRZ batCoV, that shared 66.99% amino acid identity with the ORF1ab polyprotein of
117 Betacoronavirus Erinaceus/VMC/DEU/2012 [GenBank ID: YP _009513008.1], a member of
118  the Merbecovirus subgenus. Gene annotation of the BRZ batCoV genome was performed based
119  on sequence similarity to annotated reference genomes of merbecoviruses. This analysis
120  identified two large open reading frames [ORF1a (encoding the polyprotein ppla) and ORF1ab
121  (encoding the polyprotein pplab)], as well as genes encoding the S, envelope (E), membrane
122 (M), nucleocapsid (N), and ORFS proteins (Fig. 1B and Supplementary Table S2-S3).

123 To determine the evolutionary relationships between BRZ batCoV and other
124  betacoronaviruses we inferred phylogenetic trees based on the amino acid sequence of the
125  nspl2 protein that contains the RdRp, using alphacoronaviruses as an outgroup. This yielded a
126  CoV phylogeny in which each of the five recognized subgenera (Sarbecovirus, Hibecovirus,
127 Nobecovirus, Merbecovirus, and Embecovirus) formed a distinct cluster with strong bootstrap
128  support (Fig. 1C). In contrast, BRZ batCoV formed a distinct and well supported cluster (Fig.
129  1C) with two bat CoVs [BtCoV/OCR11/Pte par/CRC/2011 (GenBank ID: AGA37403.1) and
130  BtCoV/KCR22/Pte par/CRC/2012 (GenBank ID: AGO01149.1)] sampled from the same bat
131  species in Costa Rica, but for which only partial RdRp sequences (816-nucleotide)?® were
132 available (Fig. 1D).

133 To better evaluate the genetic distinctiveness of BRZ batCoV we computed amino
134 acid genetic distances in the standard Coronavirinae gene marker set (nsp5, nspl12, nspl3,
135 nspl4, nspl5, and nsp16 protein). Intra-subgenus genetic distances ranged from 0.002—0.201
136  within each of the five betacoronavirus subgenera, and from 0.400—0.796 substitutions/site

6
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137  between the subgenera (Fig. 1E and Supplementary Table S4). The genetic distance between
138 BRZ batCoV and other subgenera ranged from 0.541-0.704 substitutions/site (Fig. 1E and
139 Supplementary Table S4), with similar values in the S, E, M, and N proteins (Supplementary
140  Fig. S1 and Supplementary Table S5-S8). Hence, BRZ batCoV is sufficiently genetically
141  distinct from known betacoronaviruses to represent a novel subgenus.

142 To more precisely document the evolutionary position of BRZ batCoV, we constructed
143 individual amino acid alignments of the ORF1ab, S, E, M, and N proteins with representative
144 betacoronaviruses and conducted genetic distance computations and phylogenetic analyses
145  (Fig. IF, Fig. 2 and Supplementary Table S9). The standard Coronavirinae marker set of BRZ
146  batCoV showed the highest amino acid sequence identity (65.8%) to Middle East respiratory
147  syndrome-related CoV [YP_009047202.1], which was also the most closely related virus with
148  respect to the polyproteinlab (45.7%) and the E protein (43.4%). For the M protein, the highest
149  identity was 44.8% to Betacoronavirus Erinaceus/VMC/DEU/2012 [AGX27817.1], which was
150  also the most closely related virus with respect to the N protein (45.4%). In contrast, the S
151  protein showed generally low identity to representative viruses, with the highest being 25.7%
152 to Pipistrellus bat CoV HKUS [YP_001039962.1]. Taken together, these data confirm that BRZ
153 batCoV is sufficiently genetically distinct to represent a novel subgenus of betacoronaviruses,
154  with particularly pronounced differences observed in the S protein. The distinctiveness of BRZ
155  batCoV was also apparent from phylogenetic analyses of each protein?!, although it generally
156  shared common ancestry with members of Merbecovirus subgenus (Fig. 2).

157

158  Structural prediction of the BRZ batCoV S protein

159  Since the CoV S glycoprotein is a key determinant of host range and pathogenicity, we next
160  investigated the properties of the S protein of BRZ batCoV. We predicted the tertiary protein

161  structures for the BRZ batCoV as both a monomer and a homotrimer by using the AlphaFold322.
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162  Despite a relatively low average predicted local distance difference test (pLDDT) score of 58,
163  we observed broad-scale structural similarity with the S glycoprotein structures of other
164  betacoronaviruses (Fig. 3A and 3B). For example, when aligned with Hedgehog CoV 1 (9JMG)
165  several structural blocks were moderately conserved, including those that spanned the S1 C
166  terminal domain and into the beginning of the S2 subunit (unpruned atom RMSD = 4.93 A,
167  residues 809-1,018), with the remaining S2 subunit displaying greater structural similarity
168  (unpruned atom RMSD = 2.80 A, residues 1,025-1,352) (Supplementary Fig. S2A). These
169  regions also corresponded to the most confidently predicted regions in the BRZ batCoV
170  structure based on predicted aligned error (PAE) and pLDDT scores (Supplementary Fig. S2B
171  and S2C).

172 BRZ batCoV was particularly notable in that it possesses a putative furin cleavage site
173 at amino acid position 831, located near the S1/S2 junction of the S protein (Supplementary
174  Table S10). Strikingly, the BRZ batCoV sequence contains a cleavage site motif — RDAR —
175  that differs from that of MERS-CoV (RSVR), but which is only one amino acid substitution
176  away from that seen in SARS-CoV-2 (RRAR) (Supplementary Table S11). As the FCS in BRZ
177  batCoV is located upstream of where FCSs are typically seen in the S1/S2 junction of other
178  betacoronaviruses, we examined whether it occupied a similar position structurally. The
179  structure predicted by AlphaFold3 was moderately confident in the FCS prediction in both the
180  BRZ batCoV monomer and trimer models (average pLDDT for residues 825-833 = 78.89 and
181  75.69, respectively). Specifically, the BRZ batCoV FCS appears as an exposed loop in the
182  trimer model, whereas in the monomer model a short f-sheet was predicted within this loop.
183  Hence, the FCS appears structurally located in the same region as that for other
184  betacoronaviruses (Fig. 3C), albeit with a slight positional offset reflected in the amino acid
185  alignment.

186
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187  Functional characterization of the putative FCS

188  To experimentally validate the predicted FCS, we expressed recombinant BRZ batCoV S
189  protein in Expi293F cells. Protein samples were purified by nickel affinity chromatography
190  and then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
191  and analyzed by Western blotting using an anti-His tag antibody. A band corresponding to the
192 full-length BRZ batCoV S was observed as was a lower molecular weight-protein band (Fig.
193 3D). Removal of the predicted FCS prevented cleavage of the BRZ batCoV S, as indicated by
194 the reduced intensity of the lower molecular weight band. As expected, the same phenomenon
195  was observed for SARS-CoV-2 S, which has an FCS at the S1/S2 junction. In contrast, the S
196  protein of bat sarbecovirus RaTG13, which lacks an FCS between its S1 and S2 subunits, was
197  resistant to protease cleavage. These results demonstrate that proteolysis of BRZ batCoV S is
198  due to the presence of a functional furin cleavage site.

199 Based on the in silico analysis, the full-length BRZ betaCoV S has a molecular weight
200  of approximately 162 kDa, and cleavage at the predicted FCS should generate an S2 fragment
201  with a molecular weight of about 69 kDa. To confirm this, the purified BRZ batCoV S was
202  treated with peptide-N-glycosidase F (PNGase F) and the migration of the deglycosylated S
203  was then evaluated by SDS-PAGE. The result was consistent with the in silico prediction (Fig.
204  3E). We also investigated the site of S cleavage. Expi293F cell pellets were lysed and analyzed
205 by SDS-PAGE and Western blotting. The result demonstrated that cleavage of the BRZ batCoV
206 S protein occurred predominantly after its secretion into the culture medium, with no detectable
207  cleavage in the cytosolic fraction (Fig. 3F). Interestingly, mutating the FCS motif from RDAR
208  to GSAS in BRZ batCoV S reduced the level of secretion, although the underlying reason is
209  currently unclear.

210 The S proteins were further purified by size-exclusion chromatography
211 (Supplementary Fig. S3A-C). From 120-mL cultures of Expi293F cells, 298.9 ng/mL of SARS-
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212 CoV-2 S(GSAS/PP) and 237.0 pg/mL of RaTG13 S(WT) were obtained (Supplementary Fig.
213 S3D). The yield of BRZ batCoV S(WT) was 4.3- and 3.5-fold lower than that of SARS-CoV-
214 2 S and RaTG13 S, respectively. These results suggest that BRZ batCoV S might be less
215  efficiently expressed in human cells compared to SARS-CoV-2 S and RaTG13 S.

216

217  Phylogenetic distribution of FCSs in betacoronaviruses

218  We next investigated whether other bat-derived betacoronaviruses possess a putative FCS
219  similar to that identified in BRZ CoV. We used ProP to predict putative FCSs near the S1/S2
220  junction (i.e., the amino acid region spanning S protein residues 599-900) in betacoronaviruses
221  with annotated host species. Putative FCSs were detected in one of 169 sequences of the
222 subgenus Sarbecovirus [Bat SARS-like CoV Khosta-1 (QVN46559.1)], two of two sequences
223 from the subgenus Hibecovirus, and 11 of 26 sequences from the subgenus Merbecovirus (Fig.
224 4A and Supplementary Table S11). These results are consistent with previous reports showing
225  that FCSs have emerged multiple times in coronavirus evolution®.

226 Following the amino acid alignment of the S proteins of bat-derived viruses, some of
227  the putative FCSs at the S1/S2 junction did not align to the same amino acid position (Fig. 4B),
228 instead falling at atypical positions such as near the N-terminal region of S1 or within S2. As
229  with BRZ batCoV, we assessed their structural location by using AlphaFold3-predicted
230  structures. Across the five known subgenera, nine of 15 other betacoronaviruses for which we
231  predicted the structures of their S proteins (including one excluded from structural prediction
232 butinferred from sequence alignment; see Supplementary Table S11) possessed FCSs that were
233 structurally located in the same region at the S1/S2 junction, similar to that of BRZ batCoV,
234  and consistent with those in SARS-CoV-2 and MERS-CoV (Fig. 4C and 4D and
235  Supplementary Table S11). Therefore, the FCSs of these bat-derived CoVs likely undergo
236  cleavage that would result in two S protein subunits, as experimentally demonstrated in SARS-

10
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237  CoV-2 and BRZ batCoV (Fig. 4C and 3D). These results suggest that FCS acquisition events
238  have occurred independently multiple times in bat betacoronaviruses, and that there may be
239  structural "hotspots" for FCS acquisition.

240

241  Discussion

242 We identified a full-length genome of a novel bat CoV (BRZ batCoV) from a Pteronotus
243 parnellii bat sampled in Brazil that is phylogenetically distinct from known betacoronaviruses.
244  This lineage originates from an under-sampled geographic region, thereby expanding the
245  landscape of bat CoV diversity. The phylogenetic distinctiveness of BRZ batCoV suggests that
246 it may represent a new subgenus of betacoronaviruses. Although partial RdRp sequences from
247  phylogenetically related viruses have been reported previously from the same bat species in
248  Costa Rica?’, the lack of corresponding structural and accessory gene sequences hindered a
249  complete understanding of their genome organization and phylogenetic position. By providing
250  acomplete gene set and demonstrating consistent phylogenetic placement across the genome,
251  we were able to address this gap. Of note, BRZ batCoV possesses a furin cleavage site with
252 the sequence motif RDAR, which has not previously been reported in coronaviruses and is
253 only one amino acid different from that seen in SARS-CoV-2 (RRAR). Given the importance
254  of the furin cleavage site in determining host range, infectivity, and cross-species
255  transmission?*%, this finding provides important insights into the evolutionary potential and
256  zoonotic risk of BRZ batCoV. More broadly, these results imply that other furin cleavage sites,
257  such as that in SARS-CoV-2, may be acquired in bats by recombination or insertion mutations,
258  further highlighting the role of bats as potential reservoirs of genetic innovations relevant to
259  zoonotic emergence.

260 Furin cleavage sites have been identified in the surface proteins of other RNA viruses.
261  For example, in highly pathogenic avian influenza viruses (Orthomyxoviridae), stem-loop

11
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262  RNA secondary structures might facilitate the insertion of a polybasic cleavage site in the
263 hemagglutinin gene?%?’, allowing cleavage by ubiquitous cellular proteases such as furin, and
264  in turn enabling replication in tissues beyond the respiratory and intestinal tract, directly
265  contributing to pathogenicity?*-**. Similarly, in avian orthoavulaviruses 1 (formerly Newcastle
266  disease virus, Paramyxoviridae), the polybasic furin-recognition motif at the fusion protein
267  cleavage site is a well-established determinant of virulence, distinguishing highly pathogenic
268  from low-pathogenic strains®!*2, Ebola virus (Filoviridae) glycoproteins also harbor FCSs,
269  although these are not strictly required for replication or virulence in nonhuman primates3-3.
270  These examples underscore FCS acquisition as an evolutionary adaptation that independently
271  arises in diverse RNA virus families, often associated with enhanced pathogenicity.

272 Several molecular evolutionary mechanisms have been proposed for the acquisition
273 of the FCS in coronavirus S proteins. First, short insertion mutations could result in the
274  formation of novel polybasic motifs, as exemplified by the PRRA 12-nt insertion at the S1/S2
275  junction in SARS-CoV-2233637, Second, recombination-mediated introduction can also lead to
276  motif acquisition, such that FCS-like sequences can be acquired through homologous
277  recombination between different CoVs or with host-derived sequences®®4°, Although CoVs,
278  such as SARS-CoV-2, harbor extensive RNA secondary structures across their genomes*!#?
279  that could facilitate mutation and recombination in a specific region®’, our results suggest that
280  FCS acquisition is impacted by protein-level constraints, with the S1/S2 junction representing
281  a structurally permissive "hotspot" for stable incorporation of cleavage motifs. Moreover,
282  although it has been suggested that the acquisition of the FCS in SARS-CoV-2 may have
283 occurred in an "intermediate host" rather than bats'®, our study suggests a viable route for it to
284  have emerged within bat populations through recombination. Indeed, bats harbor a highly

285  diverse range of CoVs, providing an evolutionary environment favorable for frequent

286  recombination. Nevertheless, the precise molecular mechanisms underlying the acquisition of
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287  FCSs remain poorly understood, underscoring the need for further investigation to elucidate
288  the determinants and constraints shaping this important adaptive trait.

289 Our study has some limitations. A previous study demonstrated that furin-cleavage at
290  the S1/S2 junction destabilizes the SARS-CoV-2 S protein, thereby promoting the open
291  conformation that exposes the receptor-binding domain and enables high-affinity ACE2
292  interaction**. We did not examine the receptor-binding properties and infectivity of the virus,
293 which restricts the extent to which its zoonotic risk can be evaluated. Hence, although the
294  presence of an FCS is clearly significant, any discussion of the zoonotic potential of this virus
295  should be limited. Future investigations are required to elucidate how the FCS in bat CoVs
296  contributes to host range expansion and pathogenicity through molecular functional validation
297  using authentic viruses and/or pseudoviruses.

298 Overall, this study underscores the importance of investigating RNA viruses in South
299  American bats as a key step toward enhancing our understanding of the phylogenetic and
300  functional diversity of RNA viruses. Our findings highlight the importance of elucidating FCS
301  acquisition events as a central molecular mechanism that shapes the pathogenicity and host
302  range of these viruses.

303
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304  Materials and methods

305 Sample collection

306  We captured bat species from three locations in Brazil (Arari and Riachdo in Maranhao state
307  and Botucatu in S3o Paulo state) between May and August 2019, and collected intestinal tissue
308 samples from 70 bats (Supplementary Table S1). Seven different bat species were collected,
309 identified based on their morphological characteristics: Anoura caudifer (n = 1), Anoura
310  geoffroyi (n = 28), Carollia perspicillata (n = 14), Desmodus rotundus (n = 2), Glossophaga
311 soricina (n = 10), Pteronotus parnellii (n = 9), and Rhinophylla alethina (n = 6). All tissue
312 samples were stored in RNAlater and then kept at -80°C until use.

313

314  Total RNA metatranscriptomic sequencing

315  Total RNA was extracted and purified using the RNeasy Mini Kit (QIAGEN). Based on the bat
316  species identified primarily by morphological criteria and collection region, the extracted RNA
317  was pooled into 16 RNA pools, with each pool containing 1-11 samples of the same type
318  (Supplementary Table S1). The preparation of sequencing libraries and rRNA depletion (host
319  and bacterial) was conducted using the TruSeq Stranded Total RNA Library Prep Kit with
320  Ribo-Zero Plus. Total RNA metatranscriptomic sequencing was performed on a NovaSeq 6000
321  platform with 100 bp paired-end reads at Macrogen Japan Corp. (Tokyo, Japan), generating
322 approximately 40 million reads per library.

323

324 Genome assembly and annotation

325  Raw reads were obtained from the 16 pools and were adaptor- and quality- trimmed with fastp®.
326  The processed reads were then de novo assembled using SPAdes v3.15.2% using the default
327  settings. The resulting contigs were queried via blastn against viral genome sequences in the

328  GenomeSync database (http://genomesync.org). The query sequences with the best hits to viral
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329  genome sequences were regarded as virus-like contigs and analyzed in detail manually.

330 To annotate the viral genome, tblastn searches were conducted against the assembled
331  genome sequence using protein sequences from the closely related MERS-CoV as queries. The
332 following proteins were used: lab polyprotein (GenBank: YP_009047202.1), spike protein
333 (GenBank: YP 009047204.1), envelope protein (GenBank: YP_009047209.1), membrane
334  protein (GenBank: YP 009047210.1), nucleoprotein (GenBank: YP 009047211.1), NS3
335  (GenBank: YP_009047205.1), NS4A (GenBank: YP _009047206.1), NS4B (GenBank:
336 YP_009047207.1), NS5 (GenBank: YP 009047208.1), and ORF8b (GenBank:

337  YP _009047212.1). Searches were performed using an e-value threshold of le — 5. The

338 resulting sequence alignments informed manual curation of gene annotations. In parallel,
339  putative open reading frames (ORFs) within the verified genome sequences were predicted
340  using Geneious Prime (version 2025.0.3) as detailed in Supplementary Table S2. To estimate
341 the putative mature protein sequences, we used SignalP 6.0 by integrating predicted cleavage
342  sites between viral nonstructural proteins with sequence alignment results of known
343 nonstructural proteins from representative betacoronaviruses (Supplementary Table S3).

344

345  Estimates of evolutionary divergence between betacoronaviruses

346  We estimated the number of amino acid substitutions per site between different
347  betacoronaviruses, with the resulting pairwise distances shown in Figure 2E and
348  Supplementary Fig. S3. Pairwise distances with standard errors are summarized in
349  Supplementary Tables S4-S8. Analyses were conducted using the JTT model of amino acid
350  substitution*” with a gamma distribution (shape parameter = 1) of among-site rate variation.
351  This analysis utilized 26 amino acid sequences. All ambiguous amino acid positions were
352 removed for each sequence pair (i.e., pairwise deletion option). The final data set contained

353 8,105 amino acid positions in ORFlab, 1,736 positions in S, and 94 positions in E. All
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354  evolutionary analyses were conducted in MEGA 11434

355

356  Phylogenetic analysis

357 To reveal the phylogenetic relationships among betacoronaviruses, representative virus
358 genomes were obtained from NCBI/GenBank (https://www.ncbi.nlm.nih.gov/). Identical

359  sequences were removed using CD-HIT-EST version 4.8.1°°

and the remaining nucleotide or
360  amino acid sequences were aligned by using the L-INS-i program in MAFFT version 7.453°!.
361  Ambiguously aligned regions were trimmed using trimAl v1.5%2, with a gap threshold of 0.9
362  and a minimum conservation threshold of 60%. Maximum likelihood phylogenetic trees were
363  then inferred using IQ-TREE 2 v2.3.6%, with the optimal substitution model selected by
364  ModelFinder>*. Branch support was calculated using 1,000 bootstrap replicates?! with the
365 UFBoot2 algorithm and an implementation of the SH-like approximate likelihood ratio test
366  available within IQ-TREE 2.

367

368  Prediction of furin cleavage sites near the S1/S2 junction in betacoronavirus S proteins
369  InJune 2025, we downloaded all full-length protein sequences annotated as "Betacoronavirus"
370  or "unclassified Betacoronavirus" from GenBank. To avoid redundancy, all SARS-CoV-2
371  sequences were excluded with the exception of one representative sequence. We then extracted

372 sequences whose protein descriptions contained the keywords "S protein," "spike, " or "surface
373  glycoprotein," yielding a total of 1,923 sequences. Of these, 1,622 sequences with annotated
374  host information were retained. Redundant sequences were removed using CD-HIT-EST
375  version 4.8.1°°, and the BRZ batCoV sequence was manually added, resulting in a final data
376  set of 935 sequences for analysis. To predict potential furin cleavage sites (FCSs) near the
377  S1/82 junction of the spike protein, we analyzed the amino acid region spanning residues 599—

378 900 using ProP v1.0b (ProPeptide Cleavage Site Prediction)>. This region was chosen to cover
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379  the putative S1/S2 junction where furin-mediated cleavage typically occurs in
380  betacoronaviruses. A site was considered a putative FCS if the ProP score exceeded the default
381  threshold.

382

383  Protein structure prediction

384  Spike protein structures for BRZ batCoV and select betacoronaviruses were predicted using
385  the AlphaFold3 web server using default settings®’. Five predictions for each model were
386  considered and, in all cases, the top ranked prediction by AlphaFold3 based on overall
387  structural confidence scores was selected. Structural homology across spike proteins was
388  evaluated using structural superpositions performed using the FATCAT webserver (version
389 2.0)°¢ and the Matchmaker tools using the Needleman-Walsh alignment algorithm®” and best
390  chain pairing within UCSF ChimeraX (version 1.10). Protein structures were visualized and
391  annotated by using UCSF ChimeraX.

392

393 Cells

394  Expi293F cells (Thermo Fisher Scientific) were maintained in the HE400AZ medium (Gmep
395 Inc.) at 37°C in 8% COsz. The cells were tested for mycoplasma contamination using PCR and
396  were confirmed to be mycoplasma free.

397

398  Plasmids

399  The codon-optimized spike genes of the BRZ batCoV, SARS-CoV-2 Wuhan-Hu-1 (GenBank:
400 QHD43416), and bat coronavirus RaTG13 (GenBank: QHR63300.2) were designed for
401  expression in mammalian cells and synthesized from GeneArt DNA Synthesis (Thermo Fisher
402  Scientific). DNA sequences encoding the spike ectodomain of BRZ batCoV (amino acid
403  residues 1-1418), SARS-CoV-2 (amino acid residues 1-1208), and RaTG13 (amino acid
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404  residues 1-1204), which include a C-terminal foldon trimerization motif followed by an octa-
405  histidine tag, were cloned into the pcDNA3.1(+) expression vector (Invitrogen) and designated
406  as pcDNA3.1-BRZ.batCoV-S-Foldon-8xHis, pcDNA3.1-SARS-CoV-2-S-Foldon-8xHis, and
407  pcDNA3.1-RaTG13-S-Foldon-8xHis, respectively.

408 Mutant spikes with a modified FCS were generated by substituting the FCS motif in
409 BRZ batCoV (RDAR at amino acid residues 828-831) and SARS-CoV-2 spike (RRAR at
410  amino acid residues 682—685) with the motif "GSAS" by using site-directed mutagenesis. A
411  double proline (PP) mutation (T1179P and L1180P for BRZ batCoV; K986P and VI987P for
412 SARS-CoV-2) was also introduced to stabilize the pre-fusion conformation of the trimeric
413 spike protein®®. All constructs were confirmed by DNA sequencing.

414

415  Preparation of purified spike proteins

416  Expi293F cells were transiently transfected with plasmids encoding recombinant spike proteins
417 - (1) the wild-type, the GSAS mutant, and the GSAS/PP mutant BRZ batCoV spikes, (ii) the
418  wild-type and the GSAS/PP mutant SARS-CoV-2 spike, and (iii) the wild-type RaTG13 spike
419 - by using the Gxpress 293 Transfection Kit (Gmep Inc.) according to the manufacturer’s
420 instructions. Five days post-transfection, cell culture supernatants were collected, clarified
421  usinga 0.45-um syringe filter, and subjected to Ni-NTA affinity chromatography (Ni Sepharose
422 6 Fast Flow, Cytiva). After being washed with a buffer containing 50 mM sodium phosphate,
423 500 mM NacCl, and 40 mM imidazole at pH 7.4, the His-tagged proteins were eluted with a
424  buffer containing 50 mM sodium phosphate, 150 mM NaCl, and 300 mM imidazole at pH 7.4.
425  The eluates were subsequently concentrated using VivaSpin20, 100K MWCO (Sartorius) and
426  subjected to size-exclusion chromatography using a Superdex 200 Increase 10/300 GL column
427  (Cytiva) equilibrated with a 50 mM HEPES buffer containing 150 mM NacCl at pH 7.4. The

428  concentration of the spike proteins was spectroscopically determined by absorbance
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429  measurements at 280 nm using 183480, 135845, and 137335 M"! cm! for BRZ batCoV, SARS-
430 CoV-2, and RaTG13, respectively, as a molar extinction coefficient. Molar extinction

431  coefficients were predicted using ProtParam (https://web.expasy.org/protparam)®’. The

432 purified spike proteins were treated with PNGase F (NEB) by following the manufacturer’s
433 protocol under non-denaturing and denaturing conditions.

434

435  Electrophoresis

436  SDS-PAGE was conducted using a 5%—20% precast polyacrylamide gel (e-PAGEL E-T520L,
437  ATTO). Samples were mixed with 5% (v/v) 2-mercaptoethanol and boiled at 100°C for 10
438  minutes prior to electrophoresis. The gels were then stained with Coomassie brilliant blue R-
439 250 (Wako) or EzStain silver (ATTO). For western blot analysis, after SDS-PAGE, the
440  separated proteins in the gel were blotted onto a 0.45-um PVDF membrane (Immobilon-P,
441  Millipore) and blocked with 5% (w/v) skim milk in phosphate-buffered saline containing 0.1%
442  Tween20 (PBS-T). The spike proteins were detected using a mouse monoclonal anti-His tag
443 antibody (1:5000; D291-3, MBL) as the primary antibody and an HRP-conjugated anti-mouse
444  IgG antibody (1:5000; Jackson) as the secondary antibody. The blots were developed with

445  ImmunoStar Zeta chemiluminescent reagent (Wako).
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633  Figure Legends

634  Figure 1. Sampling context, genomic features, and evolutionary relationships of the novel
635  betacoronavirus.

636  (A) Map showing the composition and number of bat samples collected at three locations in
637  Brazil: Riachdo (Maranhdo), Botucatu (Sao Paulo), and Arari (Maranhdo). The pie charts
638  represent bat species composition, with chart size indicating the number of individual samples
639  collected at each location. Geographic locations where samples with Coronavirus (CoV)
640  genomes were collected and bat species are indicated in red. Representative photograph of the
641  bat species (Pteronotus parnellii), in which CoV genomes were detected, is shown. (B)
642  Schematic overview of newly identified viruses belonging to the genus Betacoronavirus with
643  corresponding sample information. (C) Maximum likelihood phylogenetic tree inferred from
644  amino acid sequences of the (RdRp (non-structural protein 12), including the virus identified
645 in this study, representative viruses, and viruses showing the greatest similarity in BLAST,
646  including those matching partial sequences. Branch lengths represent the number of
647  substitutions per site. Red and blue circles at internal nodes indicate bootstrap values > 90%
648  and > 80%, respectively. Each subgenus within the genus Betacoronavirus is represented by a
649  different color. The red characters denote the CoV identified in this study (BRZ batCoV). (D)
650  Nucleotide alignment between the newly identified virus and the most closely related partial
651  RdRp sequences. (E) Pairwise genetic distances of the standard Coronavirinae gene marker set
652  (nsp5,nspl2,nspl3, nspl4, nspl5, and nsp16 protein) in representative betacoronaviruses. The
653  number of amino acid substitutions per site from between sequences is shown. (F) Pairwise
654 amino acid sequence identity between the newly identified virus and representative
655  betacoronaviruses.

656

657  Figure 2. Individual gene phylogenies of the betacoronavirus identified from Pteronotus
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658  parnellii bats sampled in Brazil.

659  Maximum likelihood phylogenetic trees of amino acid sequences of the ORF1ab, S, E, M and
660 N proteins, including the virus identified in this study and representative viruses. Branch
661 lengths represent the number of amino acid substitutions per site. Red and blue circles at
662 internal nodes indicate bootstrap values > 90% and > 80%, respectively. Each subgenus of
663  betacoronaviruses is represented by a different color. Red characters indicate BRZ batCoV,
664  which was identified in this study.

665

666  Figure 3. Characterization of the S protein of BRZ batCoV

667  (A) Predicted protein structure of the BRZ batCoV S glycoprotein monomer color-coded by
668  pLDDT confidence scores as shown in the key. (B) Predicted BRZ batCoV S glycoprotein
669  trimer with select domains colored: receptor-binding domain, purple; N-terminal domain,
670  green; C-terminal domain, orange; and subunit 2, blue. (C) Structural superposition of the
671  predicted BRZ batCoV S monomer and experimentally determined HKUS5-19 structure (PDB
672  9EHS) using Matchmaker focused on the S1/S2 junction, with the potential furin cleavage site
673  (FCS) annotated. The FCS in 9EHS (residues 751-758) was not modeled, but the modeled
674  region surrounding this (residues -751 and 765-) was highlighted to show its approximate
675  position. (D) Western blotting of the S protein expressed from plasmids in Expi293F cells. S
676  proteins from BRZ batCoV (wild-type, GSAS mutant, and GSAS/PP mutant), SARS-CoV-2
677  (wild-type and GSAS/PP mutant), and bat RaTG13 (wild-type) were analyzed after purification
678 by nickel affinity chromatography. All constructs were engineered as soluble ectodomains
679  lacking transmembrane and cytoplasmic domains, with C-terminal His-tags for detection with
680  an anti-His tag antibody. GSAS mutations replaced the FCS motif (RDAR in BRZ batCoV;
681 RRAR in SARS-CoV-2) with a non-cleavable sequence. PP denotes double proline mutations

682 introduced to stabilize the prefusion trimer. Arrows indicate full-length S and cleaved S2
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683  fragments. (E) Treatment of purified BRZ batCoV S with peptide-N-glycosidase F (PNGase
684  F) under non-denaturing and denaturing conditions. PNGase F removes N-linked glycans,
685 allowing visualization of the deglycosylated protein core and confirmation of predicted
686  molecular weights (full-length S approx. 162 kDa; S2 fragment approx. 69 kDa). (F) Western
687  blotting comparing intracellular and extracellular localization of BRZ batCoV S protein
688  cleavage. Expi293F cells expressing wild-type or mutant (GSAS or GSAS/PP) BRZ batCoV S
689  were fractionated into cytosolic fractions and culture supernatants. Whole cell lysates are
690  shown for reference. His-tagged S proteins were detected by using an anti-His tag antibody.
691

692  Figure 4. Putative furin cleavage sites in bat-derived betacoronaviruses and their
693  structural locations

694  (A) Detection of putative furin cleavage sites in bat-derived betacoronaviruses. Full-length S
695  protein sequences were analyzed using ProP to predict potential FCSs near the S1/S2 junction
696  based on each amino acid position (i.e., the amino acid region spanning residues 599-900).
697 The presence or absence of predicted FCSs is summarized by subgenus, highlighting
698  distinctions between bat-derived and non-bat-derived CoVs. (B-C) Structural and sequence
699  comparison of the S1/S2 junction in SARS-CoV-2. (B) Pairwise amino acid alignment between
700  the sequences underlying the structures in (C) with the FCS annotated. (C) Superposition of
701  predicted betacoronavirus S proteins with the predicted FCSs highlighted. The viruses used for
702  superposition are shown in Supplementary Table S11. (D) Number of bat CoVs with an FCS

703 ata similar S1/S2 junction in SARS-CoV-2, shown by subgenus.
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